An Effective Method for Comparing Control Flow Graphs through Edge Extension

نویسنده

  • Hyun-il Lim
چکیده

In this paper, we present an effective method for comparing control flow graphs which represent static structures of binary programs. To compare control flow graphs, we measure similarities by comparing instructions and syntactic information contained in basic blocks. In addition, we also consider similarities of edges, which represent control flows between basic blocks, by edge extension. Based on the comparison results of basic blocks and edges, we match most similar basic blocks in two control flow graphs, and then calculate the similarity between control flow graphs. We evaluate the proposed edge extension method in real world Java programs with respect to structural similarities of their control flow graphs. To compare the performance of the proposed method, we also performed experiments with a previous structural comparison for control flow graphs. From the experimental results, the proposed method is evaluated to have enough distinction ability between control flow graphs which have different structural characteristics. Although the method takes more time than previous method, it is evaluated to be more resilient than previous method in comparing control flow graphs which have similar structural characteristics. Control flow graph can be effectively used in program analysis and understanding, and the proposed method is expected to be applied to various areas, such as code optimization, detection of similar code, and detection of code plagiarism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013